A Polynomial Time Algorithm for 3SAT

نویسندگان

چکیده

article A Polynomial Time Algorithm for 3SAT ACM Transactions on Computation Theory September 2021 Article No.: 15, pp 1–13 https://doi.org/10.1145/3460950Online:18 July 2021Publication History 0citation412DownloadsMetricsTotal Citations0Total Downloads412Last 12 Months412Last 6 weeks0

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A randomized, efficient algorithm for 3SAT

In this paper, we study an extension of Schöning’s algorithm [Schöning, 1991] for 3SAT, based on the concept of truth valuation, which is a generalization of the concept of truth assignment. Under a very reasonable conjecture, we prove that the algorithm is polynomial.

متن کامل

Method of resolution of 3SAT in polynomial time

Presentation of a Method for determining whether a problem 3Sat has solution, and if yes to find one, in time max O(n 15 ). Is thus proved that the problem 3Sat is fully resolved in polynomial time and therefore that it is in P, by the work of Cook and Levin, and can transform a SAT problem in a 3Sat in polynomial time (ref. Karp), it follows that P = NP. Open Source program is available at htt...

متن کامل

A Polynomial Time Algorithm for SAT

Description of the compatibility matrices method for solution of systems of Boolean equations. The method is applied to determine whether SAT instances have clauses in their disjunctive normal form.

متن کامل

A Polynomial Time Algorithm for Graph Isomorphism

Algorithms testing two graphs for isomorphism known as yet in computer science have exponential worst case complexity. In this paper we propose an algorithm that has polynomial complexity and constructively supplies the evidence that the graph isomorphism lies in P.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Computation Theory

سال: 2021

ISSN: ['1942-3454', '1942-3462']

DOI: https://doi.org/10.1145/3460950