A-posteriori error estimation for the finite point method with applications to compressible flow

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimate for the mixed finite element method

A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...

متن کامل

Chebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory

In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...

متن کامل

A Posteriori Finite Element Error Estimation for Diffusion Problems

Adjerid et al. 2] and Yu 19, 20] show that a posteriori estimates of spatial discretiza-tion errors of piecewise bi-p polynomial nite element solutions of elliptic and parabolic problems on meshes of square elements may be obtained from jumps in solution gradients at element vertices when p is odd and from local elliptic or parabolic problems when p is even. We show that these simple error esti...

متن کامل

Efficient A Posteriori Error Estimation for Finite Volume Methods

The propagation of error in numerical solutions of the compressible Navier-Stokes equations is examined using linearized, and adjoint linearized versions of the discrete flow solver. With the forward linearization it is possible, given a measure of the local residual error in the field, to obtain estimates of global solution error. This allows for example the computation of error estimates on p...

متن کامل

A posteriori error estimation for the stochastic collocation finite element method

In this work, we consider an elliptic partial differential equation with a random coefficient solved with the stochastic collocation finite element method. The random diffusion coefficient is assumed to depend in an affine way on independent random variables. We derive a residual-based a posteriori error estimate that is constituted of two parts controlling the stochastic collocation (SC) and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Mechanics

سال: 2017

ISSN: 0178-7675,1432-0924

DOI: 10.1007/s00466-017-1402-7