A quadratic form tr(AX2) and its application
نویسندگان
چکیده
منابع مشابه
A New Form of the Circle Method, and its Application to Quadratic Forms
If the coefficients r(n) satisfy suitable arithmetic conditions the behaviour of F (α) will be determined by an appropriate rational approximation a/q to α, with small values of q usually producing large values of F (α). When α lies in an interval [a/q − δ, a/q + δ] with q small, a ‘major arc’, one hopes to estimate F (α) asymptotically, while if the corresponding q is large, for the ‘minor arc...
متن کاملA new quadratic deviation of fuzzy random variable and its application to portfolio optimization
The aim of this paper is to propose a convex risk measure in the framework of fuzzy random theory and verify its advantage over the conventional variance approach. For this purpose, this paper defines the quadratic deviation (QD) of fuzzy random variable as the mathematical expectation of QDs of fuzzy variables. As a result, the new risk criterion essentially describes the variation of a fuzzy ...
متن کاملconstruction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
¿ Functions of a Quadratic Form
Let Q be a positive definite integral quadratic form in ti variables, with the additional property that the adjoint form Q' is also integral. Using the functional equation of the Epstein zeta function, we obtain a symmetric functional equation of the ¿-function of Q with a primitive character to mod q (additive or multiplicative) defined by £io(2(x))C(x)-ï. Re(s) > nl2> where the summation exte...
متن کاملKaplansky’s Ternary Quadratic Form
This paper proves that if N is a nonnegative eligible integer, coprime to 7, which is not of the form x2+y2+7z2, thenN is square-free. The proof is modelled on that of a similar theorem by Ono and Soundararajan, in which relations between the number of representations of an integer np2 by two quadratic forms in the same genus, the pth coefficient of an L-function of a suitable elliptic curve, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(97)00002-5