A RECOLLEMENT APPROACH TO GEIGLE–LENZING WEIGHTED PROJECTIVE VARIETIES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Projective Varieties

0. Introduction i. Weighted projective space i.i. Notations 1.2. Interpretations 1.3. The first properties 1.4. Cohomology of 0F(n) 1.5. Pathologies 2. Bott's theorem 2.1. The sheaves ~(n) 2.2. Justifications 2.3. Cohomology of ~$(n) 3. Weighted complete intersections 3.1. Quasicones 3.2. Complete intersections 3.3. The dualizing sheaf 3.4. The Poincare series 3.5. Examples 4. The Hodge structu...

متن کامل

Weighted Approach to Projective Clustering

k-means is the basic method applied in many data clustering problems. As is known, its natural modification can be applied to projection clustering by changing the cost function from the squared-distance from the point to the squared distance from the affine subspace. However, to apply thus approach we need the beforehand knowledge of the dimension. In this paper we show how to modify this appr...

متن کامل

Introduction to projective varieties

0. Algebraic background 1. Projective sets and their ideals; Weak Nullstellensatz 2. Irreducible components 3. Hilbert polynomial. Nullstellensatz 4. Graded modules; resolutions and primary decomposition 5. Dimension, degree and arithmetic genus 6. Product of varieties 7. Regular maps 8. Properties of morphisms 9. Resolutions and dimension 10. Ruled varieties 11. Tangent spaces and cones; smoot...

متن کامل

Lines on Projective Varieties

I prove two theorems: Let X ⊂ P be a hypersurface and let x ∈ X be a general point. If the set of lines having contact to order k with X at x is of dimension greater than expected, then the lines having contact to order k are actually contained in X. A variety X is said to be covered by lines if there exist a finite number of lines in X passing through a general point. Let X ⊂ P be a variety co...

متن کامل

a-COHOMOLOGY OF COMPLEX PROJECTIVE VARIETIES

to nonsmooth varieties V by taking the L 2 -cohomology H&rq (V Sing V) of the smooth part of V on the left and the L 2 a-cohomology H&i q (V Sing V) of the smooth part on the right. Here" L 2 -cohomology" is in the sense of de Rham's book [dR] and the Riemannian (or Hermitan) metric on V Sing V is that induced from the imbedding of V in projective space. When M is smooth the alternating sum of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 2016

ISSN: 0027-7630,2152-6842

DOI: 10.1017/nmj.2016.39