A remark on relative geometric invariant theory for quasi-projective varieties

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric invariant theory and projective toric varieties

We define projective GIT quotients, and introduce toric varieties from this perspective. We illustrate the definitions by exploring the relationship between toric varieties and polyhedra. Geometric invariant theory (GIT) is a theory of quotients in the category of algebraic varieties. Let X be a projective variety with ample line bundle L, and G an algebraic group acting on X, along with a lift...

متن کامل

Algebraic Cocycles on Normal, Quasi-Projective Varieties

Blaine Lawson and the author introduced algebraic cocycles on complex algebraic varieties in [FL-1] and established a duality theorem relating spaces of algebraic cocycles and spaces of algebraic cycles in [FL-2]. This theorem has non-trivial (and perhaps surprising) applications in several contexts. In particular, duality enables computations of “algebraic mapping spaces” consisting of algebra...

متن کامل

Projective varieties invariant by one - dimensional foliations

This work concerns the problem of relating characteristic numbers of onedimensional holomorphic foliations of PC to those of algebraic varieties invariant by them. More precisely: if M is a connected complex manifold, a one-dimensional holomorphic foliation F of M is a morphism Φ : L −→ TM where L is a holomorphic line bundle on M . The singular set of F is the analytic subvariety sing(F) = {p ...

متن کامل

Topologically Invariant Chern Numbers of Projective Varieties

We prove that a rational linear combination of Chern numbers is an oriented diffeomorphism invariant of smooth complex projective varieties if and only if it is a linear combination of the Euler and Pontryagin numbers. In dimension at least three we prove that only multiples of the top Chern number, which is the Euler characteristic, are invariant under diffeomorphisms that are not necessarily ...

متن کامل

Relative Geometric Invariant Theory and Universal Moduli Spaces

We expose in detail the principle that the relative geomet-ric invariant theory of equivariant morphisms is related to the GIT forlinearizations near the boundary of the G-effective ample cone. We thenapply this principle to construct and reconstruct various universal mod-uli spaces. In particular, we constructed the universal moduli spaceover Mg of Simpson’s p-semistable co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2018

ISSN: 0025-584X

DOI: 10.1002/mana.201800054