A representation theorem for cyclic analytic two-isometries

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theorem on Local Isometries

A mapping 0 of a G-space R (Busemann [l ]) on itself is a locally isometric mapping if for each x£P there is a number r)x>0 such that (x), vx). The problem we are concerned with is that of determining conditions on a G-space R under which every locally isometric mapping of R on itself is an isometry. Several such conditions have ...

متن کامل

Two Remarks on Skorohod Representation Theorem

With reference to Skorohod representation theorem, it is shown that separability of the limit law cannot be dropped (provided, of course, non separable probabilities exist). An alternative version of the theorem, not requesting separability of the limit, is discussed. A notion of convergence in distribution, extending that of Hoffmann-Jørgensen to non measurable limits, is introduced. For such ...

متن کامل

A Fixed Point Theorem for Analytic Functions

We denote that set by A(z,w,k) and (following [1]) call it the Apollonius circle of constant k associated to the points z and w. The set A(z,w,k) is a circle for all values of k other than 1 when it is a line. In this paper, we consider z,w ∈ U, show that if z = w, then necessarily A(z,w, √ (1−|w|2)/(1−|z|2)) meets the unit circle twice, consider the arc on the unit circle with those endpoints,...

متن کامل

Representation Theorem for Stacks

In this paper i is a natural number and x is a set. Let A be a set and let s1, s2 be finite sequences of elements of A. Then s1s2 is an element of A∗. Let A be a set, let i be a natural number, and let s be a finite sequence of elements of A. Then s i is an element of A∗. The following two propositions are true: (1) ∅ i = ∅. (2) Let D be a non empty set and s be a finite sequence of elements of...

متن کامل

Olson’s Theorem for Cyclic Groups

Let n be a large number. A subset A of Zn is complete if SA = Zn, where SA is the collection of the subset sums of A. Olson proved that if n is prime and |A| > 2n1/2, then SA is complete. We show that a similar result for the case when n is a composite number, using a different approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1991

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1991-1013337-1