A residual duality over Gorenstein rings with application to logarithmic differential forms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein homological dimensions with respect to a semi-dualizing module over group rings

Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring  . It is shown that Gorenstein homological dimensions  of an  -RΓ module M with respect to a semi-dualizing module,  are equal over R and RΓ  .

متن کامل

GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS

Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.

متن کامل

Gorenstein hereditary rings with respect to a semidualizing module

‎Let $C$ be a semidualizing module‎. ‎We first investigate the properties of‎ ‎finitely generated $G_C$-projective modules‎. ‎Then‎, ‎relative to $C$‎, ‎we introduce and study the rings over which‎ ‎every submodule of a projective (flat) module is $G_C$-projective (flat)‎, ‎which we call $C$-Gorenstein (semi)hereditary rings‎. ‎It is proved that every $C$-Gorenstein hereditary ring is both cohe...

متن کامل

Intersection Multiplicities over Gorenstein Rings

LetR be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ `(F n R(M)) pnd = `(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for wh...

متن کامل

Periodic modules over Gorenstein local rings

It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Singularitiesl

سال: 2018

ISSN: 1949-2006

DOI: 10.5427/jsing.2018.18m