A result on a class of elliptic equations involving Kirchhoff type nonlocal term
نویسندگان
چکیده
منابع مشابه
On the Existence of Solutions of a Nonlocal Elliptic Equation with a p-Kirchhoff-Type Term
Questions on the existence of positive solutions for the following class of elliptic problems are studied: − M ‖u‖p1,p 1,p Δpu f x, u , in Ω, u 0, on ∂Ω, where Ω ⊂ R is a bounded smooth domain, f : Ω ×R → R and M : R → R, R 0,∞ are given functions. Copyright q 2008 F. J. S. A. Corrêa and R. G. Nascimento. This is an open access article distributed under the Creative Commons Attribution License,...
متن کاملSolutions of a Nonlocal Elliptic Problem Involving p(x)-Kirchhoff-type Equation
The present paper deals with a Kirchhoff problem under homogeneous Dirichlet boundary conditions, set in a bounded smooth domain Ω of R^{N}. The problem studied is a stationary version of the orig inal Kirchhoff equation, involving the p(x)-Lap lacian operator, in the framework of the variable exponent Lebesgue and Sobolev spaces. The question of the existence of weak solutions is treated. Appl...
متن کاملOn nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملMultiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions
In this paper, we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity. Using some variational arguments and exploiting the symmetries of the problem, we establish a multiplicity result giving two nontrivial solutions.
متن کاملOn a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition
Ω |∇u| )]p−1 ∆pu = f (u, v)+ ρ1(x) in Ω, − [ M2 (∫ Ω |∇v| )]p−1 ∆pv = g(u, v)+ ρ2(x) in Ω, ∂u ∂η = ∂v ∂η = 0 on ∂Ω, (1.1) where Ω ⊂ R,N ≥ 1, is a bounded smooth domain, 1 < p < N, η is the unit exterior vector on ∂Ω , ∆p is the p-Laplacian operator ∆pu = div(|∇u|p−2∇u) ∗ Corresponding author. E-mail addresses: [email protected], [email protected] (F.J.S.A. Corrêa), [email protected] (R.G. Na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2017
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.11.036