A Riemannian structure for correlation matrices
نویسندگان
چکیده
منابع مشابه
Riemannian Sparse Coding for Positive Definite Matrices
Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...
متن کاملA method for generating realistic correlation matrices
Simulating sample correlation matrices is important in many areas of statistics. Approaches such as generating Gaussian data and finding their sample correlation matrix or generating random uniform [−1, 1] deviates as pairwise correlations both have drawbacks. We develop an algorithm for adding noise, in a highly controlled manner, to general correlation matrices. In many instances, our method ...
متن کاملRiemannian geometry on positive definite matrices
The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function φ in the form K D(H,K) = ∑ i,j φ(λi, λj) −1TrPiHPjK when ∑ i λiPi is the spectral decomposition of the foot point D and the Hermitian matrices H,K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D 7→ ...
متن کاملWasserstein Riemannian Geometry of Positive-definite Matrices∗
The Wasserstein distance on multivariate non-degenerate Gaussian densities is a Riemannian distance. After reviewing the properties of the distance and the metric geodesic, we derive an explicit form of the Riemannian metrics on positive-definite matrices and compute its tensor form with respect to the trace scalar product. The tensor is a matrix, which is the solution of a Lyapunov equation. W...
متن کاملCorrelation Matrices
In this paper we introduce the correlation matrix of a Boolean mapping, a useful concept in demonstrating and proving properties of Boolean functions and mappings. It is argued that correlation matrices are the “natural” representation for the proper understanding and description of the mechanisms of linear cryptanalysis [4]. It is also shown that the difference propagation probabilities and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2019
ISSN: 1846-3886
DOI: 10.7153/oam-2019-13-46