A second-order statistics method for blind source separation in post-nonlinear mixtures
نویسندگان
چکیده
منابع مشابه
Blind Source Separation in Post Nonlinear Mixtures
This work implements alternative algorithms to that of Taleb and Jutten for blind source separation in post nonlinear mixtures. We use the same mutual information criterion as them, but we exploit its invariance with respect to translation to express its relative gradient in terms of the derivatives of the nonlinear transformations. Then we develop algorithms based on these derivatives. In a se...
متن کاملBlind Source Separation of Post-nonlinear Mixtures Using Evolutionary Computation and Order Statistics
In this work, we address the problem of source separation of post-nonlinear mixtures. There are two main problems related to the training of separating systems in this case: the requirement of entropy estimation and the risk of local convergence. In order to overcome both difficulties, we propose a training paradigm based on entropy estimation through order statistics and on an evolutionary-bas...
متن کاملA blind source separation technique using second-order statistics
Separation of sources consists of recovering a set of signals of which only instantaneous linear mixtures are observed. In many situations, no a priori information on the mixing matrix is available: The linear mixture should be “blindly” processed. This typically occurs in narrowband array processing applications when the array manifold is unknown or distorted. This paper introduces a new sourc...
متن کاملBlind source-separation using second-order cyclostationary statistics
This paper studies the blind source separation (BSS) problem with the assumption that the source signals are cyclostationary. Identifiability and separability criteria based on second-order cyclostationary statistics (SOCS) alone are derived. The identifiability condition is used to define an appropriate contrast function. An iterative algorithm (ATH2) is derived to minimize this contrast funct...
متن کاملMarkovian Source Separation in Post-nonlinear Mixtures
In linear mixtures, priors, like temporal coloration of the sources, can be used for designing simpler and better algorithms. Especially, modeling sources by Markov models is very efficient, and Markov source separation can be achieved by minimizing the conditional mutual information [1, 2]. This model allows to separate temporally colored Gaussian sources. In this paper, we extend this result ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2019
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2018.09.031