A Self-injective Cellular Algebra Is Weakly Symmetric
نویسندگان
چکیده
منابع مشابه
On weakly projective and weakly injective modules
The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module M , there exists a module K ∈ σ[M ] such that K ⊕N is weakly injective in σ[M ], for any N ∈ σ[M ]. Similarly, if M is projective and right perfect in σ[M ], then there exists a module K ∈ σ[M ] such that K ⊕ N i...
متن کاملFp-injective and Weakly Quasi-frobenius Rings
The classes of FP -injective and weakly quasi-Frobenius rings are investigated. The properties for both classes of rings are closely linked with embedding of finitely presented modules in fp-flat and free modules respectively. Using these properties, we characterize the classes of coherent CF and FGF-rings. Moreover, it is proved that the group ring R(G) is FP -injective (weakly quasi-Frobenius...
متن کاملWeakly Symmetric Spaces and Bounded Symmetric Domainshieu
In this paper, new examples of weakly symmetric spaces in the sense of A. Selberg 14] are constructed. Let G be a connected, simply-connected, simple Lie group of hermitian type and K a maximal compactly embedded subgroup of G such that D = G=K is an irreducible classical bounded symmetric domain. Let G 1 and D 1 be circle extensions of G and D, respectively. The factor of automorphy induces a ...
متن کاملStructure of Fp-injective and Weakly Quasi-frobenius Rings
In the present paper new criteria for classes of FP -injective and weakly quasi-Frobenius rings are given. Properties of both classes of rings are closely linked with embedding of finitely presented modules in fp-flat and free modules respectively. Using these properties, we describe classes of coherent CF and FGF-rings. Moreover, it is proved that the group ring R(G) is FP -injective (resp. we...
متن کاملInjective Linear Cellular Automata and Sofic Groups
Let V be a finite-dimensional vector space over a field K and let G be a sofic group. We show that every injective linear cellular automaton τ : V G → V G is surjective. As an application, we obtain a new proof of the stable finiteness of group rings of sofic groups, a result previously established by G. Elek and A. Szabó using different methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.8037