A semi-smooth Newton method for an inverse problem in option pricing
نویسندگان
چکیده
منابع مشابه
A Newton Method for American Option Pricing
The variational inequality formulation provides a mechanism to determine both the option value and the early exercise curve implicitly [17]. Standard finite difference approximation typically leads to linear complementarity problems with tridiagonal coefficient matrices. The second order upwind finite difference formulation gives rise to finite dimensional linear complementarity problems with n...
متن کاملThe inverse problem of option pricing
The Black-Scholes formula [6] provides with an elegant and simple method to price financial derivatives under the assumption that the stock price is log-normally distributed. However, the actual distribution of most assets is rarely log-normal, and theoretical prices of options with different strikes generated by the Black-Scholes formula differ from observed market prices. One way to reconcile...
متن کاملOn a Newton Method for the Inverse Toeplitz Eigenvalue Problem
Iterative methods for inverse eigenvalue problems involve simultaneous approximation of the matrix being sought and its eigenvectors This paper revisits one such method for the inverse Toeplitz eigenvalue problems by exploring the eigenstructure of centrosymmetric matrices All itera tions are now taking place on a much smaller subspace One immediate consequence is that the size of the problem i...
متن کاملA New Stock Model for Option Pricing in Uncertain Environment
The option-pricing problem is always an important part in modern finance. Assuming that the stock diffusion is a constant, some literature has introduced many stock models and given corresponding option pricing formulas within the framework of the uncertainty theory. In this paper, we propose a new stock model with uncertain stock diffusion for uncertain markets. Some option pricing formulas on...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2007
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200700708