A Semi-supervised Learning Method for Q-Matrix Specification Under the DINA and DINO Model With Independent Structure
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Structure Learning
Discriminative learning framework is one of the very successful fields of machine learning. The methods of this paradigm, such as Boosting, and Support Vector Machines have significantly advanced the state-of-the-art for classification by improving the accuracy and by increasing the applicability of machine learning methods. Recently there has been growing interest to generalize discrimative le...
متن کاملA Semi-supervised Method for Learning the Structure of Robot Environment Interactions
For a mobile robot to act autonomously, it must be able to construct a model of its interaction with the environment. Oates et al. developed an unsupervised learning method that produces clusters of robot experiences based on the dynamics of the interaction, rather than on static features. We present a semisupervised extension of their technique that uses information about the controller and th...
متن کاملA Semi-Supervised Method for Learning the Structure of Robot-Environment Interaction
For a mobile robot to act autonomously, it must be able to construct a model of its interaction with the environment. Oates et al. developed an unsupervised learning method that produces clusters of robot experiences based on the dynamics of the interaction, rather than on static features. We present a semi-supervised extension of their technique that uses information about the controller and t...
متن کاملa semi-supervised human action learning
exploiting multimodal information like acceleration and heart rate is a promising method to achieve human action recognition. a semi-supervised action recognition approach aucc (action understanding with combinational classifier) using the diversity of base classifiers to create a high-quality ensemble for multimodal human action recognition is proposed in this paper. furthermore, both labeled ...
متن کاملA Semi-supervised Learning Method for Motility Disease Diagnostic
This work tackles the problem of learning a robust classification function from a very small sample set when a related but unlabeled data set is provided. To this end we define a new semi-supervised method that is based on a stability criterion. We successfully apply our proposal in the specific case of automatic diagnosis of intestinal motility disease using video capsule endoscopy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Psychology
سال: 2020
ISSN: 1664-1078
DOI: 10.3389/fpsyg.2020.02120