A sequential Monte Carlo algorithm for solving BSDEs
نویسندگان
چکیده
منابع مشابه
A parallel algorithm for solving BSDEs
We present a parallel algorithm for solving backward stochastic differential equations. We improve the algorithm proposed in Gobet and Labart (2010), based on an adaptive Monte Carlo method with Picard’s iterations, and propose a parallel version of it. We test our algorithm on linear and non linear drivers up to dimension 8 on a cluster of 312 CPUs. We obtained very encouraging efficiency rati...
متن کاملAn Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering
We propose an efficient sequential Monte Carlo inference scheme for the recently proposed coalescent clustering model [1]. Our algorithm has a quadratic runtime while those in [1] is cubic. In experiments, we were surprised to find that in addition to being more efficient, it is also a better sequential Monte Carlo sampler than the best in [1], when measured in terms of variance of estimated li...
متن کاملSequential Monte Carlo Samplers
In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...
متن کاملSequential Monte Carlo Bandits
In this paper we propose a flexible and efficient framework for handling multi-armed bandits, combining sequential Monte Carlo algorithms with hierarchical Bayesian modeling techniques. The framework naturally encompasses restless bandits, contextual bandits, and other bandit variants under a single inferential model. Despite the model’s generality, we propose efficient Monte Carlo algorithms t...
متن کاملVariational Sequential Monte Carlo
Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2007
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200700298