A Simple Analytic Proof of the Pollaczek-Wendel Identity for Ordered Partial Sums

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple proof of Zariski's Lemma

‎Our aim in this very short note is to show that the proof of the‎ ‎following well-known fundamental lemma of Zariski follows from an‎ ‎argument similar to the proof of the fact that the rational field‎ ‎$mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.

متن کامل

Cesáro partial sums of certain analytic functions

The aim of the present paper is to consider geometric properties such as starlikeness and convexity of the Cesáro partial sums of certain analytic functions in the open unit disk. By using the Cesáro partial sums, we improve some recent results including the radius of convexity. 1 Introduction Let U := {z : |z| < } be a unit disk in the complex plane C and let H denote the space of all analyti...

متن کامل

Partial Sums of Certain Analytic Functions

The object of the present paper is to consider the starlikeness and convexity of partial sums of certain analytic functions in the open unit disk. 2000 Mathematics Subject Classification. Primary 30C45.

متن کامل

A simple proof of Dixon's identity

We present another simple proof of Dixon’s identity.

متن کامل

Analytic Proof of a Partition Identity 3 2 .

In this paper we give an analytic proof of the identity A 5,3,3 (n) = B 0 5,3,3 (n), where A 5,3,3 (n) counts the number of partitions of n subject to certain restrictions on their parts, and B 0 5,3,3 (n) counts the number of partitions of n subject to certain other restrictions on their parts, both too long to be stated in the abstract. Our proof establishes actually a refinement of that part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1973

ISSN: 0091-1798

DOI: 10.1214/aop/1176996991