A Smooth Inexact Penalty Reformulation of Convex Problems with Linear Constraints

نویسندگان

چکیده

In this work, we consider a constrained convex problem with linear inequalities and provide an inexact penalty reformulation of the problem. The novelty is in choice functions, w...

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate Gradient Methods for Smooth Convex Problems with Inexact Oracle

Between the robust but slow (primal or dual) gradient methods and the fast but sensitive to errors fast gradient methods, our goal in this paper is to develop first-order methods for smooth convex problems with intermediate speed and intermediate sensitivity to errors. We develop a general family of first-order methods, the Intermediate Gradient Method (IGM), based on two sequences of coefficie...

متن کامل

A Regularized Inexact Penalty Decomposition Algorithm for Multidisciplinary Design Optimization Problems With Complementarity Constraints

Economic and physical considerations often lead to equilibrium problems in multidisciplinary design optimization (MDO), which can be captured by MDO problems with complementarity constraints (MDO-CC)—a newly emerging class of problem. Due to the ill-posedness associated with the complementarity constraints, many existing MDO methods may have numerical difficulties solving this class of problem....

متن کامل

Separable convex optimization problems with linear ascending constraints

Separable convex optimization problems with linear ascending inequality and equality constraints are addressed in this paper. Under an ordering condition on the slopes of the functions at the origin, an algorithm that determines the optimum point in a finite number of steps is described. The optimum value is shown to be monotone with respect to a partial order on the constraint parameters. More...

متن کامل

First-order methods of smooth convex optimization with inexact oracle

In this paper, we analyze different first-order methods of smooth convex optimization employing inexact first-order information. We introduce the notion of an approximate first-order oracle. The list of examples of such an oracle includes smoothing technique, Moreau-Yosida regularization, Modified Lagrangians, and many others. For different methods, we derive complexity estimates and study the ...

متن کامل

Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data

We consider the problem of minimizing a smooth convex objective function subject to the set of minima of another differentiable convex function. In order to solve this problem, we propose an algorithm which combines the gradient method with a penalization technique. Moreover, we insert in our algorithm an inertial term, which is able to take advantage of the history of the iterates. We show wea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Optimization

سال: 2021

ISSN: ['1095-7189', '1052-6234']

DOI: https://doi.org/10.1137/18m1209180