A steepest ascent method for the Chebyshev problem
نویسندگان
چکیده
منابع مشابه
The steepest-ascent method for the linear programming problem
This paver deals with afinite projection method (called the steepest-ascent method) proposée in 1974 by one oj the authors for maximizing a hnear function on a polyhedron In the particular case of the maximizatwn of a piecewise-linear concave function the method simply gives a recently pubhshed algonthm stated in theframework of the nondifferentiable convex optimizatwn Résumé — Ce papier traite...
متن کاملSteepest Ascent Hill Climbing For A Mathematical Problem
The paper proposes artificial intelligence technique called hill climbing to find numerical solutions of Diophantine Equations. Such equations are important as they have many applications in fields like public key cryptography, integer factorization, algebraic curves, projective curves and data dependency in super computers. Importantly, it has been proved that there is no general method to fin...
متن کاملSteepest Ascent Tariff Reforms
This paper introduces the concept of a steepest ascent tariff reform for a small open economy. By construction, it is locally optimal in that it yields the highest gain in utility of any feasible tariff reform vector of the same length. Accordingly, it provides a convenient benchmark for the evaluation of the welfare effectiveness of other tariff reform proposals. We develop the properties of t...
متن کاملSteepest Ascent for Large - Scale Linear Programs
Many structured large-scale linear programming problems can be transformed into an equivalent problem of maximizing a piecewise linear, concave function subject to linear constraints. The equivalent problem can, in turn, be solved in a finite number of steps using a steepest ascent algorithm. This principle is applied to block diagonal systems yielding refinements of existing algorithms. An app...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1969
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1969-0258251-6