A Study on Non-Destructive Method for Detecting Toxin in Pepper Using Neural Networks
نویسندگان
چکیده
منابع مشابه
A study on non-destructive method for detecting Toxin in pepper using Neural networks
Mycotoxin contamination in certain agricultural systems have been a serious concern for human and animal health. Mycotoxins are toxic substances produced mostly as secondary metabolites by fungi that grow on seeds and feed in the field, or in storage. The food-borne Mycotoxins likely to be of greatest significance for human health in tropical developing countries are Aflatoxins and Fumonisins. ...
متن کاملNoise Removal Methods of Chili Pepper Images for Detecting Toxin Using Neural Networks
Professor Department of Computer Science, Avinashilingam Deemed University, Coimbatore -43. Tamilnadu, India. Abstract: Mycotoxins are toxic substances produced mostly as secondary metabolites by fungi that grow on seeds and feed in the field, or in storage. The food-borne Mycotoxins likely to be of greatest significance for human health are Aflatoxin and Fumonisins. Chili pepper is also affect...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Improving Non - Destructive Test Results Using Artificial Neural Networks
In the construction industry, non-destructive testing (NDT) methods are gaining more popularity for their ability to examine the in-situ component properties without damaging the structure. One of the most common NDTs for measuring the concrete compressive strength on site is the Rebound Hammer Test. Using the rebound value obtained from the test hammer, the concrete compressive strength can be...
متن کاملArtificial neural networks for non destructive testing of concrete structures
In this paper, the determination of defects in concrete structures using an ultrasound technique is discussed. A diagnostic model for concrete pillars by means of Multi Layer Perceptron neural networks is developed to locate and classify the defects. Finite Elements numerical techniques have been used to model a concrete pillar of specified size (i.e., rectangular cross section and 2 meters in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Artificial Intelligence & Applications
سال: 2012
ISSN: 0976-2191
DOI: 10.5121/ijaia.2012.3414