A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
نویسندگان
چکیده
منابع مشابه
A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
Owing to the high dimensionality of multilabel data, feature selection in multilabel learning will be necessary in order to reduce the redundant features and improve the performance of multilabel classification. Rough set theory, as a valid mathematical tool for data analysis, has been widely applied to feature selection (also called attribute reduction). In this study, we propose a variable pr...
متن کاملQuick attribute reduction in inconsistent decision tables
This paper focuses on three types of attribute reducts in inconsistent decision tables: assignment reduct, distribution reduct, and maximum distribution reduct. It is quite inconvenient to judge these three types of reduct directly according to their definitions. This paper proposes judgment theorems for the assignment reduct, the distribution reduct and the maximum distribution reduct, which a...
متن کاملVariable-precision dominance-based rough set approach and attribute reduction
In this paper, a variable-precision dominance-based rough set approach (VP-DRSA) is proposed together with several VP-DRSA-based approaches to attribute reduction. The properties of VP-DRSA are shown in comparison to previous dominance-based rough set approaches. An advantage of VP-DRSA over variable-consistency dominance-based rough set approach in decision rule induction is emphasized. Some r...
متن کاملCompacted decision tables based attribute reduction
This paper first points out that the reducts obtained from a simplified decision table are different from those obtained from its original version, and from a simplified decision table, we cannot obtain the reducts in the sense of entropies. To solve these problems, we propose the compacted decision table that can preserve all the information coming from its original version. We theoretically d...
متن کاملMetric Based Attribute Reduction in Dynamic Decision Tables
In the past two decades, several results appeared on feature reduction applying rough set theory. However, most of these methods are implemented on static decision tables. Using a distance measure, in this paper we propose algorithms to find the reducts of decision tables when adding or deleting objects. Since we can avoid re-running the original algorithms over the entire set of objects, our m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/359626