A variance-aware multiobjective Louvain-like method for community detection in multiplex networks

نویسندگان

چکیده

Abstract In this article, we focus on the community detection problem in multiplex networks, that is, networks with multiple layers having same node sets and no inter-layer connections. particular, look for groups of nodes can be recognized as communities consistently across layers. To end, propose a new approach generalizes Louvain method by (a) simultaneously updating average variance modularity scores (b) reformulating greedy search procedure terms filter-based multiobjective optimization scheme. Unlike many previous maximization strategies, which rely some form aggregation various layers, our aims at maximizing individual modularities each layer simultaneously. We report experiments synthetic real-world showing effectiveness robustness proposed strategies both informative case, where all show structure, noisy represent only noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizes the Community Detection for Increase Trust using Multiplex Networks

Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...

متن کامل

MCMC Louvain for Online Community Detection

We introduce a novel algorithm of community detection that maintains dynamically a community structure of a large network that evolves with time. The algorithm maximizes the modularity index thanks to the construction of a randomized hierarchical clustering based on a Monte Carlo Markov Chain (MCMC) method. Interestingly, it could be seen as a dynamization of Louvain algorithm (see [1]) where t...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

A Changepoint Detection Method for Profile Variance

A wavelet-based changepoint method is proposed that determines when the variability of the noise in a sequence of functional profiles goes out-of-control from a known, fixed value. The functional portion of the profiles are allowed to come from a large class of functions and may vary from profile to profile. The proposed method makes use of the orthogonal properties of wavelet projections to ac...

متن کامل

An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks

The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complex Networks

سال: 2022

ISSN: ['2051-1310', '2051-1329']

DOI: https://doi.org/10.1093/comnet/cnac048