Accuracy of ab initio electron correlation and electron densities in vanadium dioxide
نویسندگان
چکیده
منابع مشابه
Ab Initio Methods for Electron Correlation in Molecules
c © 2000 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher ment...
متن کاملAb initio group model potentials including electron correlation effects
A method for determination of ab initio group model potentials, with the intention of describing the effects of a whole molecule or a chemical group within a density functional theory framework, is reported. The one-electron part of the Kohn–Sham equations is modified by incorporation of a Coulomb operator, which accounts for the classical electron interaction arising from the group. Exchange a...
متن کاملAccurate ab Initio Spin Densities
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution...
متن کاملAb initio electron mobility and polar phonon scattering in GaAs
In polar semiconductors and oxides, the long-range nature of the electron-phonon (e-ph) interaction is a bottleneck to compute charge transport from first principles. Here, we develop an efficient ab initio scheme to compute and converge the e-ph relaxation times (RTs) and electron mobility in polar materials. We apply our approach to GaAs, where by using the Boltzmann equation with state-depen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Materials
سال: 2017
ISSN: 2475-9953
DOI: 10.1103/physrevmaterials.1.065408