Achromatic number of K5×Kn for large n

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concerning the achromatic number of graphs

The achromatic number of a graph G is the largest number of colors that can be assigned to the vertices of G so that (i) adjacent vertices are assigned different colors, and (ii) any two different colors are assigned to some pair of adjacent vertices. We study the achromatic number from the point of view of computational complexity. We show that, for each fixed integer n, there is an algorithm ...

متن کامل

The achromatic number of Kneser graphs

The achromatic number α of a graph is the largest number of colors that can be assigned to its vertices such that adjacent vertices have different color and every pair of different colors appears on the end vertices of some edge. We estimate the achromatic number of Kneser graphs K(n, k) and determine α(K(n, k)) for some values of n and k. Furthermore, we study the achromatic number of some geo...

متن کامل

On the Achromatic Number of Hypercubes

The achromatic number of a nite graph G, (G), is the maximum number of independent sets into which the vertex set may be partitioned, so that between any two parts there is at least one edge. For an m-dimensional hypercube P m 2 we prove: There exist constants 0 < c 1 < c 2 , independent of m, such that

متن کامل

An Improved Approximation of the Achromatic Number on Bipartite Graphs

The achromatic number of a graph G = (V,E) with | V |= n vertices is the largest number k with the following property: the vertices of G can be partitioned into k independent subsets {Vi}1≤i≤k such that for every distinct pair of subsets Vi, Vj in the partition, there is at least one edge in E that connects these subsets. We describe a greedy algorithm that computes the achromatic number of a b...

متن کامل

On the achromatic number of the Cartesian product G1×G2

We study the achromatic number of the Cartesian product of graphs G 1 and G 2 and obtain the following results: (i) maXl<t<rn min{l mn J, t(m + n-1)-t 2 + I}

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2001

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(00)00399-x