Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer
نویسندگان
چکیده
منابع مشابه
Acoustic rotational manipulation using orbital angular momentum transfer.
We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the acoustic radiation torque calculated from the Brillouin stress tensor and the viscous...
متن کاملMillimetre Wave with Rotational Orbital Angular Momentum
Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space...
متن کاملPlasmonic orbital angular momentum manipulation through light control
Plasmonic vortices (PV) excited by a highly focused radially polarized optical vortex (RPOV) beam on a metal surface are investigated experimentally and theoretically. The proposed method reveals a direct phase singularity and orbital angular momentum (OAM) transfer from an incident structured beam to its counterpart in surface plasmon with dynamic, reconfigurable and high-efficiency advantages...
متن کاملNanostructured optical elements for manipulation of orbital angular momentum
Applications of glass nanostructuring for manipulation of orbital angular momentum are reviewed. The phase control is implemented via the combination of form birefringence and Pancharatnam-Berry phase.
متن کاملOptical communications using orbital angular momentum beams
Orbital angular momentum (OAM), which describes the “phase twist” (helical phase pattern) of light beams, has recently gained interest due to its potential applications in many diverse areas. Particularly promising is the use of OAM for optical communications since: (i) coaxially propagating OAM beams with different azimuthal OAM states are mutually orthogonal, (ii) inter-beam crosstalk can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2012
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.109.034301