Active learning for efficiently training emulators of computationally expensive mathematical models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Analysis for Computationally Expensive Models with Multiple Outputs

Bayesian MCMC calibration and uncertainty analysis for computationally expensive models is implemented using the SOARS (Statistical and Optimization Analysis using Response Surfaces) methodology. SOARS uses a radial basis function interpolator as a surrogate, also known as an emulator or meta-model, for the logarithm of the posterior density. To prevent wasteful evaluations of the expensive mod...

متن کامل

Regarding probabilistic analysis and computationally expensive models: necessary and required?

OBJECTIVE To assess the importance of considering decision uncertainty, the appropriateness of probabilistic sensitivity analysis (PSA), and the use of patient-level simulation (PLS) in appraisals for the National Institute for Health and Clinical Excellence (NICE). METHODS Decision-makers require estimates of decision uncertainty alongside expected net benefits (NB) of interventions. This re...

متن کامل

Application of Multimodal Optimization for Uncertainty Estimation of Computationally Expensive Hydrologic Models

The generalized likelihood uncertainty estimation (GLUE) framework has been widely used in hydrologic studies. However, the extensive random sampling causes a high computational burden that prohibits the efficient application of GLUE to costly distributed hydrologic models such as the soil and water assessment tool (SWAT). In this study, a multimodal optimization algorithm called isolatedspecia...

متن کامل

Improved scatter search for the global optimization of computationally expensive dynamic models

A new algorithm for global optimization of costly nonlinear continuous problems is presented in this paper. The algorithm is based on the scatter search metaheuristic, which has recently proved to be efficient for solving combinatorial and nonlinear optimization problems. A kriging-based prediction method has been coupled to the main optimization routine in order to discard the evaluation of so...

متن کامل

Sequential Domain Patching for Computationally Feasible Multi-objective Optimization of Expensive Electromagnetic Simulation Models

Vast majority of practical engineering design problems require simultaneous handling of several criteria. For the sake of simplicity and through a priori preference articulation one can turn many design tasks into single-objective problems that can be handled using conventional numerical optimization routines. However, in some situations, acquiring comprehensive knowledge about the system at ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics in Medicine

سال: 2020

ISSN: 0277-6715,1097-0258

DOI: 10.1002/sim.8679