Active Learning for Saddle Point Calculation

نویسندگان

چکیده

The saddle point (SP) calculation is a grand challenge for computationally intensive energy function in computational chemistry area, where the may represent transition state. traditional methods need to evaluate gradients of at very large number locations. To reduce expensive computations true gradients, we propose an active learning framework consisting statistical surrogate model, Gaussian process regression (GPR) function, and single-walker dynamics method, gentle accent (GAD), saddle-type states. SP detected by GAD applied GPR gradient vector Hessian matrix. Our key ingredient efficiency improvements method which sequentially designs most informative locations takes evaluations original model these train GPR. We formulate this task as optimal experimental design problem efficient sample-based sub-optimal criterion construct show that new significantly decreases required or force model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Saddle-Point Dynamics: Conditions for Asymptotic Stability of Saddle Points

This paper considers continuously differentiable functions of two vector variables that have (possibly a continuum of) min-max saddle points. We study the asymptotic convergence properties of the associated saddle-point dynamics (gradient-descent in the first variable and gradientascent in the second one). We identify a suite of complementary conditions under which the set of saddle points is a...

متن کامل

saddle point variational method for dirac confinement

a saddle point variational (spv ) method was applied to the dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. the effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. the cornell pot...

متن کامل

Preconditioners for Generalized Saddle-point Problems Preconditioners for Generalized Saddle-point Problems *

We examine block-diagonal preconditioners and efficient variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. We consider the general, nonsymmetric, nonsingular case. In particular, the (1,2) block need not equal the transposed (2,1) block. Our preconditioners arise from computationally efficient splittings of the (1,1) block. We provide analyses for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2022

ISSN: ['1573-7691', '0885-7474']

DOI: https://doi.org/10.1007/s10915-022-02040-1