Acylindrical Actions for Two-Dimensional Artin Groups of Hyperbolic Type

نویسندگان

چکیده

Abstract For a two-dimensional Artin group $A$ whose associated Coxeter is hyperbolic, we prove that the action of on hyperbolic space obtained by coning off certain subcomplexes its modified Deligne complex acylindrical. Moreover, if for each $s\in S$ there $t\in with $m_{st}< \infty $, then this universal. As consequence, $|S|\geq 3$, irreducible, it acylindrically hyperbolic. We also obtain Tits alternative $A$, and classify subgroups virtually split as direct product. A key ingredient in our approach simple criterion to show acylindricity an $\textrm{CAT}(-1)$ complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Two - dimensional Artin groups with CAT ( 0 ) dimension three ∗

We exhibit 3-generator Artin groups which have finite 2-dimensional Eilenberg-Mac Lane spaces, but which do not act properly discontinuously by semi-simple isometries on a 2-dimensional CAT(0) complex. We prove that infinitely many of these groups are the fundamental groups of compact, non-positively curved 3-complexes. These examples show that the geometric dimension of a CAT(0) group may be s...

متن کامل

Two-dimensional Artin Groups with Cat(0) Dimension Three *

We exhibit 3-generator Artin groups which have finite 2-dimensional Eilenberg-Mac Lane spaces, but which do not act properly discontinuously by semi-simple isometries on a 2-dimensional CAT(0) complex. We prove that infinitely many of these groups are the fundamental groups of compact, non-positively curved 3-complexes. These examples show that the geometric dimension of a CAT(0) group may be s...

متن کامل

Artin groups of euclidean type

Coxeter groups were introduced by Jacques Tits in the 1960s as a natural generalization of the groups generated by reflections which act geometrically (which means properly discontinuously cocompactly by isometries) on spheres and euclidean spaces. And ever since their introduction their basic structure has been reasonably well understood [BB05, Bou02, Dav08]. More precisely, every Coxeter grou...

متن کامل

Ergodic Theorems for Actions of Hyperbolic Groups

In this note we give a short proof of a pointwise ergodic theorem for measure preserving actions of word hyperbolic groups, also obtained recently by Bufetov, Khristoforov and Klimenko. Our approach also applies to infinite measure spaces and one application is to linear actions of discrete groups on the plane. 0. Introduction The well-known Birkhoff ergodic theorem for ergodic transformations ...

متن کامل

Gaussian groups and Garside groups, two generalisations of Artin groups

It is known that a number of algebraic properties of the braid groups extend to arbitrary finite Coxeter type Artin groups. Here we show how to extend the results to more general groups that we call Garside groups. Define a Gaussian monoid to be a finitely generated cancellative monoid where the expressions of a given element have bounded lengths, and where left and right lower common multiples...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab068