Adaptive anisotropic meshing for steady convection-dominated problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive anisotropic meshing for steady convection-dominated problems

Obtaining accurate solutions for convection–diffusion equations is challenging due to the presence of layers when convection dominates the diffusion. To solve this problem, we design an adaptive meshing algorithm which optimizes the alignment of anisotropic meshes with the numerical solution. Three main ingredients are used. First, the streamline upwind Petrov–Galerkin method is used to produce...

متن کامل

Multilevel Homotopic Adaptive Methods for Convection Dominated Problems

A multilevel homotopic adaptive method is presented in this paper for convection dominated problems. By the homotopic method with respect to the diffusion parameter, the grids are iteratively adapted to better approximate the solution. Some new theoretic results and practical techniques for the grid adaptation are presented. Numerical experiments show that a standard finite element scheme based...

متن کامل

Multilevel Homotopic Adaptive Finite Element Methods for Convection Dominated Problems

A multilevel homotopic adaptive finite element method is presented in this paper for convection dominated problems. By the homotopic method with respect to the diffusion parameter, the grids are iteratively adapted to better approximate the solution. Some new theoretic results and practical techniques for the grid adaptation are presented. Numerical experiments show that a standard finite eleme...

متن کامل

On adaptive anisotropic mesh optimisation for convection-diffusion problems

Numerical solution of convection-dominated problems requires the use of layer-adapted anisotropic meshes. Since a priori construction of such meshes is difficult for complex problems, it is proposed to generate them in an adaptive way by moving the node positions in the mesh such that an a posteriori error estimator of the overall error of the approximate solution is reduced. This approach is f...

متن کامل

Discontinuous Galerkin Methods for Convection-Dominated Problems

In this paper, we review the development of the Runge–Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge–Kutta time discretizations, that allows the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2009

ISSN: 0045-7825

DOI: 10.1016/j.cma.2009.05.001