Adaptive Spectral Galerkin Methods with Dynamic Marking
نویسندگان
چکیده
منابع مشابه
Adaptive Spectral Galerkin Methods with Dynamic Marking
The convergence and optimality theory of adaptive Galerkin methods is almost exclusively based on the Dörfler marking. This entails a fixed parameter and leads to a contraction constant bounded below away from zero. For spectral Galerkin methods this is a severe limitation which affects performance. We present a dynamic marking strategy that allows for a superlinear relation between consecutive...
متن کاملUvA - DARE ( Digital Academic Repository ) Adaptive Spectral Galerkin Methods with Dynamic Marking
The convergence and optimality theory of adaptive Galerkin methods is almost exclusively based on the Dörfler marking. This entails a fixed parameter and leads to a contraction constant bounded below away from zero. For spectral Galerkin methods this is a severe limitation which affects performance. We present a dynamic marking strategy that allows for a superlinear relation between consecutive...
متن کاملUvA - DARE ( Digital Academic Repository ) Adaptive Spectral Galerkin Methods with Dynamic
The convergence and optimality theory of adaptive Galerkin methods is almost exclusively based on the Dörfler marking. This entails a fixed parameter and leads to a contraction constant bounded below away from zero. For spectral Galerkin methods this is a severe limitation which affects performance. We present a dynamic marking strategy that allows for a superlinear relation between consecutive...
متن کاملAdaptive Fourier-Galerkin methods
We study the performance of adaptive Fourier-Galerkin methods in a periodic box in R d with dimension d ≥ 1. These methods offer unlimited approximation power only restricted by solution and data regularity. They are of intrinsic interest but are also a first step towards understanding adaptivity for the hp-FEM. We examine two nonlinear approximation classes, one classical corresponding to alge...
متن کاملAdaptive Discontinuous Galerkin Methods with Multiwavelets Bases
We demonstrate the advantages of using multi-reolution analysis with multiwavelet basis with the Discontinuous Galerkin (DG) method. This provides significant enhancements to the standard DG methods. To illustrate the important gains of using the Multiwavelet DG method we apply it to conservation and convection diffusion problems in multiple dimensions. The significant benefits of merging DG me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2016
ISSN: 0036-1429,1095-7170
DOI: 10.1137/15m104579x