Addendum to: on Novikov's conjecture for cocompact subgroups of a lie group
نویسندگان
چکیده
منابع مشابه
Cocompact Subgroups of Semisimple Lie Groups
Lattices and parabolic subgroups are the obvious examples of cocompact subgroups of a connected, semisimple Lie group with finite center. We use an argument of C. C. Moore to show that every cocompact subgroup is, roughly speaking, a combination of these. We study a cocompact subgroup H of a connected, semisimple Lie group G with finite center. The case where H is discrete is very important and...
متن کاملCocompact Arithmetic Subgroups of Pu
We will say that a smooth projective complex algebraic variety V (of dimension n − 1) is a fake Pn−1 if V is the quotient of the unit ball Bn−1 by a torsion-free cocompact discrete subgroup of PU(n − 1, 1), and all the Betti numbers of V are equal to those of Pn−1 C . If the fundamental goup of a fake P n−1 is an arithmetic subgroup of PU(n − 1, 1), then we will say that it is an arithmetic fak...
متن کاملOn the planarity of a graph related to the join of subgroups of a finite group
Let $G$ be a finite group which is not a cyclic $p$-group, $p$ a prime number. We define an undirected simple graph $Delta(G)$ whose vertices are the proper subgroups of $G$, which are not contained in the Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge if and only if $G=langle H , Krangle$. In this paper we classify finite groups with planar graph. ...
متن کاملConvex cocompact subgroups of mapping class groups
We develop a theory of convex cocompact subgroups of the mapping class group MCG of a closed, oriented surface S of genus at least 2, in terms of the action on Teichmüller space. Given a subgroup G of MCG de ning an extension 1 ! 1(S) ! ΓG ! G ! 1, we prove that if ΓG is a word hyperbolic group then G is a convex cocompact subgroup of MCG. When G is free and convex cocompact, called a Schottky ...
متن کاملOn a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1987
ISSN: 0166-8641
DOI: 10.1016/0166-8641(87)90028-9