ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
نویسندگان
چکیده
منابع مشابه
Provably Positive Discontinuous Galerkin Methods for Multidimensional Ideal Magnetohydrodynamics
The density and pressure are positive physical quantities in magnetohydrodynamics (MHD). Design of provably positivity-preserving (PP) numerical schemes for ideal compressible MHD is highly desired, but remains a challenge especially in the multi-dimensional cases. In this paper, we develop uniformly high-order discontinuous Galerkin (DG) schemes which provably preserve the positivity of densit...
متن کاملA Numerical Method for General Relativistic Magnetohydrodynamics
This paper describes the development and testing of a general relativistic magnetohydrodynamic (GRMHD) code to study ideal MHD in the fixed background of a Kerr black hole. The code is a direct extension of the hydrodynamic code of Hawley, Smarr, and Wilson, and uses Evans and Hawley constrained transport (CT) to evolve the magnetic fields. Two categories of test cases were undertaken. A one di...
متن کاملAnalysis of ADER and ADER-WAF schemes
We study stability properties and truncation errors of the finite-volume ADER schemes on structured meshes as applied to the linear advection equation with constant coefficients in one-, twoand threespatial dimensions. Stability of linear ADER schemes is analysed by means of the von Neumann method. For nonlinear schemes, we deduce the stability region from numerical experiments. The truncation ...
متن کاملGeneral spline filters for discontinuous Galerkin solutions
The discontinuous Galerkin (dG) method outputs a sequence of polynomial pieces. Post-processing the sequence by Smoothness-Increasing Accuracy-Conserving (SIAC) convolution not only increases the smoothness of the sequence but can also improve its accuracy and yield superconvergence. SIAC convolution is considered optimal if the SIAC kernels, in the form of a linear combination of B-splines of ...
متن کاملArbitrary High Order Discontinuous Galerkin Schemes
In this paper we apply the ADER one step time discretization to the Discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADERDG scheme does not need more memory than a first order explicit Euler ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2018
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/sty734