Air Pollution Prediction Via Graph Attention Network and Gated Recurrent Unit

نویسندگان

چکیده

PM2.5 concentration prediction is of great significance to environmental protection and human health. Achieving accurate has become an important research task. However, pollutants can spread in the earth’s atmosphere, causing mutual influence between different cities. To effectively capture air pollution relationship cities, this paper proposes a novel spatiotemporal model combining graph attention neural network (GAT) gated recurrent unit (GRU), named GAT-GRU for prediction. Specifically, GAT used learn spatial dependence data GRU extract temporal long-term series. The proposed integrates learned spatio-temporal dependencies complex features. Considering that related meteorological conditions city, knowledge acquired from enhance performance. input consists data. In order verify effectiveness model, designs experiments on real-world datasets compared with other baselines. Experimental results prove our achieves excellent performance

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Air pollution prediction via multi-label classification

A Bayesian network classifier can be used to estimate the probability of an air pollutant overcoming a certain threshold. Yet multiple predictions are typically required regarding variables which are stochastically dependent, such as ozone measured in multiple stations or assessed according to by different indicators. The common practice (independent approach) is to devise an independent classi...

متن کامل

Minimal Gated Unit for Recurrent Neural Networks

Recently recurrent neural networks (RNN) has been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN is a difficult task, partly because there are many competing and complex hidden units (such as LSTM and GRU). We propose a gated unit for RNN, named as Minimal Gated Unit (MGU), since it only contains one gate, which is a minimal design a...

متن کامل

Semantic Relation Classification via Hierarchical Recurrent Neural Network with Attention

Semantic relation classification remains a challenge in natural language processing. In this paper, we introduce a hierarchical recurrent neural network that is capable of extracting information from raw sentences for relation classification. Our model has several distinctive features: (1) Each sentence is divided into three context subsequences according to two annotated nominals, which allows...

متن کامل

Link Prediction via Ranking Metric Dual-Level Attention Network Learning

Link prediction is a challenging problem for complex network analysis, arising in many disciplines such as social networks and telecommunication networks. Currently, many existing approaches estimate the proximity of the link endpoints from the local neighborhood around them for link prediction, which suffer from the localized view of network connections. In this paper, we consider the problem ...

متن کامل

Hurricane Trajectory Prediction via a Sparse Recurrent Neural Network

A proposed sparse recurrent neural network with flexible topology is used for trajectory prediction of the Atlantic hurricanes. For prediction of the future trajectories of a target hurricane, the most similar hurricanes to the target hurricane are found by comparing directions of the hurricanes. Then, the first and second differences of their positions over their life time are used for trainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2022

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2022.028411