Algebraic Cayley graphs over finite fields
نویسندگان
چکیده
منابع مشابه
Algebraic Cayley graphs over finite fields
Article history: Received 6 April 2013 Received in revised form 23 January 2014 Accepted 25 January 2014 Available online xxxx Communicated by Igor Shparlinski MSC: 11L40 05C75 05C50
متن کاملWorkshop on Algebraic Curves Over Finite Fields
Let L(t) = 1+a1t+ · · ·+a2gt be the numerator of the zeta function of an algebraic curve C defined over the finite field Fq of genus g. We show that the coefficients ar of L(t) satisfy certain inequalities. Conversely, for any integers a1, . . . , am satisfying these inequalities and all sufficiently large integers g there exist curves of genus g, whose L-polynomial satisfies the following cong...
متن کاملIntegral Cayley Graphs Generated by Distance Sets in Vector Spaces over Finite Fields
Si Li and the fourth listed author (2008) considered unitary graphs attached to the vector spaces over finite rings using an analogue of the Euclidean distance. These graphs are shown to be integral when the cardinality of the ring is odd or the dimension is even. In this paper, we show that the statement also holds for the remaining case: the cardinality of the ring is even and the dimension i...
متن کاملDifference algebraic subgroups of commutative algebraic groups over finite fields
We study the question of which torsion subgroups of commutative algebraic groups over finite fields are contained in modular difference algebraic groups for some choice of a field automorphism. We show that if G is a simple commutative algebraic group over a finite field of characteristic p, ` is a prime different from p, and for some difference closed field (K, σ) the `-primary torsion of G(K)...
متن کاملAlgebraic complexities and algebraic curves over finite fields
We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2014
ISSN: 1071-5797
DOI: 10.1016/j.ffa.2014.01.014