Algebraic invariant curves and the integrability of polynomial systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Darboux integrability and invariant algebraic curves for planar polynomial systems

In this paper we study the normal forms of polynomial systems having a set of given generic invariant algebraic curves. PACS numbers: 02.30.Ik, 02.10.De

متن کامل

Algebraic invariant curves of plane polynomial differential systems

We consider a plane polynomial vector field P(x, y) dx +Q(x, y) dy of degree m > 1. With each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω = dx/P = dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate has already been found by Cerveau and Lins Neto ...

متن کامل

Multiplicity of Invariant Algebraic Curves and Darboux Integrability

We define four different kinds of multiplicity of an invariant algebraic curve for a given polynomial vector field and investigate their relationships. After taking a closer look at the singularities and at the line of infinity, we improve the Darboux theory of integrability using these new notions of multiplicity.

متن کامل

Algebraic Invariant Curves and Algebraic First Integrals for Riccati Polynomial Differential Systems

We characterize the algebraic invariant curves for the Riccati polynomial differential systems of the form x′ = 1, y′ = a(x)y+ b(x)y+ c(x), where a(x), b(x) and c(x) are arbitrary polynomials. We also characterize their algebraic first integrals.

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1993

ISSN: 0893-9659

DOI: 10.1016/0893-9659(93)90123-5