Algebraic methods in sum-product phenomena
نویسندگان
چکیده
منابع مشابه
SUM-PRODUCT PHENOMENA: p-ADIC CASE
The sum-product phenomena over a finite extension K of Qp is explored. The main feature of the results is the fact that the implied constants are independent p.
متن کاملSUM - PRODUCT PHENOMENA IN F p : A BRIEF INTRODUCTION
These notes arose from my Cambridge Part III course on Additive Combinatorics, given in Lent Term 2009. The aim was to understand the simplest proof of the Bourgain-Glibichuk-Konyagin bounds for exponential sums over subgroups. As a byproduct one obtains a clean proof of the Bourgain-Katz-Tao theorem on the sumproduct phenomenon in Fp. The arguments are essentially extracted from Bourgain’s pap...
متن کاملSum-Product-Quotient Networks
We present a novel tractable generative model that extends Sum-Product Networks (SPNs) and significantly boosts their power. We call it Sum-Product-Quotient Networks (SPQNs), whose core concept is to incorporate conditional distributions into the model by direct computation using quotient nodes, e.g. P (A|B)= (A,B) P (B) . We provide sufficient conditions for the tractability of SPQNs that gene...
متن کاملCredal Sum-Product Networks
Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic graphical models that allow for marginal inference with polynomial effort. As with other probabilistic models, sum-product networks are often learned from data and used to perform classification. Hence, their results are prone to be unreliable and overconfident. In this work, we develop credal su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2011
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-011-0096-3