Algebraicity of analytic maps to a hyperbolic variety
نویسندگان
چکیده
منابع مشابه
Local topological algebraicity of analytic function germs
T. Mostowski showed that every (real or complex) germ of an analytic set is homeomorphic to the germ of an algebraic set. In this paper we show that every (real or complex) analytic function germ, defined on a possibly singular analytic space, is topologically equivalent to a polynomial function germ defined on an affine algebraic variety.
متن کاملAlgebraicity of global real analytic hypersurfaces
In this paper we generalize some results of [2] dealing with transforming real analytic sets onto real algebraic sets. There are obstructions of both local and global nature. The local obstruction is manageable, provided the singularities of the real analytic set under consideration are isolated. The global obstruction can be expressed in terms of homology. For simplicity we will call nonsingul...
متن کاملThe Gauss Map and the Dual Variety of Real-analytic Submanifolds in a Sphere or in a Hyperbolic Space
We study the Gauss map and the dual variety of a real-analytic immersion of a connected compact real-analytic manifold into a sphere or into a hyperbolic space. The dual variety is defined to be the set of all normal directions of the immersion. First, we show that the image of the Gauss map characterizes the manifold. Also we show that the dual variety characterizes the manifold. Besides, dual...
متن کاملa genre analytic study of research papers written by bilingual writers and their beliefs: a case of persian-english writers
تحقیق حاضر گزارشی است از تحلیل بخش مقدمه دو دسته از مقالات که عبارتند از: 11 مقاله از دو نویسنده دوزبانه فارسی زبان, که شامل مقدمه 4 مقاله به زبان انگلیسی و چاپ شده در مجلات بین المللی, مقدمه 3 مقاله به زبان انگلیسی و 4 مقاله به زبان فارسی چاپ شده در مجلات داخلی می شود؛ و 12 مقاله از محققان خارجی که در مجله applied linguistics به چاپ رسیده است. مبنای تئوری این تحلیل ها نظریه سوئلز (1990) یا هما...
15 صفحه اولSpectra of analytic hyperbolic maps and flows: Correlation functions, Fredholm determinants and zeta-functions
In [13] we defined a class of so-called ‘Hyperbolic Analytic Maps’. Given a map in this class one associates a Banach space and a family of transfer operators with analytic weights on the space. These operators are nuclear in the sense of Grothendieck. An elementary proof was given in the case of 1+1 dimensional maps [Fried has extended the proof to higher dimensional systems]. In this case suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2020
ISSN: 0025-584X,1522-2616
DOI: 10.1002/mana.201900098