Algorithm 637: GENCOL: collocation of general domains with bicubic hermite polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Methods for Piecewise Hermite Bicubic Or- Thogonal Spline Collocation

| Matrix decomposition algorithms employing fast Fourier transforms were developed recently by the authors to solve the systems of linear algebraic equations that arise when piecewise Hermite bicubic orthogonal spline collocation (OSC) is applied to certain separable elliptic boundary value problems on a rectangle. In this paper, these algorithms are interpreted as Fourier methods in analogy wi...

متن کامل

An Additive Schwarz Algorithm for Piecewise Hermite Bicubic

An overlapping domain decomposition, additive Schwarz, conjugate gradient method is presented for the solution of the linear systems which arise when orthogonal spline collocation with piecewise Hermite bicu-bics is applied to the Dirichlet problem for Poisson's equation on a rectangle .

متن کامل

On Hermite-hermite Matrix Polynomials

In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite ma...

متن کامل

SOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD

Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...

متن کامل

H1-norm Error Bounds for Piecewise Hermite Bicubic Orthogonal Spline Collocation Schemes for Elliptic Boundary Value Problems

Two piecewise Hermite bicubic orthogonal spline collocation schemes are considered for the approximate solution of elliptic, self-adjoint, nonhomogeneous Dirichlet boundary value problems on rectangles. In the rst scheme, the nonhomogeneous Dirichlet boundary condition is approximated by means of the piecewise Hermite cubic interpolant, while the piecewise cubic interpolant at the boundary Gaus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Mathematical Software

سال: 1985

ISSN: 0098-3500,1557-7295

DOI: 10.1145/6187.6194