Algorithms for positive semidefinite factorization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Positive Semidefinite Factorization

This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices {A, ..., A} and {B, ..., B} such that Xi,j = trace(AB) for i = 1, ...,m, and ...

متن کامل

The complexity of positive semidefinite matrix factorization

Let A be a matrix with nonnegative real entries. The PSD rank of A is the smallest integer k for which there exist k × k real PSD matrices B1, . . . , Bm, C1, . . . , Cn satisfying A(i|j) = tr(BiCj) for all i, j. This paper determines the computational complexity status of the PSD rank. Namely, we show that the problem of computing this function is polynomial-time equivalent to the existential ...

متن کامل

On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization

Incomplete Cholesky factorizations have long been important as preconditioners for use in solving largescale symmetric positive-definite linear systems. In this paper, we focus on the relationship between two important positive semidefinite modification schemes that were introduced to avoid factorization breakdown, namely the approach of Jennings and Malik and that of Tismenetsky. We present a ...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Optimization and Applications

سال: 2018

ISSN: 0926-6003,1573-2894

DOI: 10.1007/s10589-018-9998-x