Almost nilpotency of an associative algebra with an almost nilpotent fixed-point subalgebra
نویسندگان
چکیده
منابع مشابه
Almost Multi-Cubic Mappings and a Fixed Point Application
The aim of this paper is to introduce $n$-variables mappings which are cubic in each variable and to apply a fixed point theorem for the Hyers-Ulam stability of such mapping in non-Archimedean normed spaces. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes are presented.
متن کاملThe Fixed Point Subalgebra of a Lattice Vertex Operator Algebra by an Automorphism of Order Three
We study the subalgebra of the lattice vertex operator algebra V√ 2A2 consisting of the fixed points of an automorphism which is induced from an order 3 isometry of the root lattice A2. We classify the simple modules for the subalgebra. The rationality and the C2-cofiniteness are also established.
متن کاملModular Group Algebras with Almost Maximal Lie Nilpotency Indices. I
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G|+ 1, where |G| is the order of the commutator subgroup. The authors have previously determined the groups G for which this index is maximal and here they determine the G for which it is ‘almost maximal’, that ...
متن کاملModular Group Algebras with Almost Maximal Lie Nilpotency Indices, Ii
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G| + 1, where |G| is the order of the commutator subgroup. Previously we determined the groups G for which the upper/lower nilpotency index is maximal or the upper nilpotency index is ‘almost maximal’ (that is, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2018
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.03.019