Alternating descent method for gauge cooling of complex Langevin simulations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Langevin Simulations

This chapter reviews numerical simulations of quantum field theories based on stochastic quantization and the Langevin equation. The topics discussed include renormalization of finite stepsize algorithms, Fourier acceleration, and the relation of the Langevin equation to hybrid stochastic algorithms and hybrid Monte Carlo. Invited chapter to appear in the special supplement “Stochastic Quantiza...

متن کامل

Stochastic Dual Coordinate Descent with Alternating Direction Multiplier Method

A. Derivation of the proximal operation for the smoothed hinge loss By the definition of the smoothed hinge loss, we have that, for −1 ≤ y i v ≤ 0, f * i (v) = sup u∈R {uv − f i (u)} = sup u∈R uv − 1 2 (1 − y i u)

متن کامل

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

On the Convergence of Multi-Block Alternating Direction Method of Multipliers and Block Coordinate Descent Method

The paper answers several open questions of the alternating direction method of multipliers (ADMM) and the block coordinate descent (BCD) method that are now wildly used to solve large scale convex optimization problems in many fields. For ADMM, it is still lack of theoretical understanding of the algorithm when the objective function is not separable across the variables. In this paper, we ana...

متن کامل

Multipebble Simulations for Alternating Automata

We study generalized simulation relations for alternating Büchi automata (ABA), as well as alternating finite automata. Having multiple pebbles allows the Duplicator to “hedge her bets” and delay decisions in the simulation game, thus yielding a coarser simulation relation. We define (k1, k2)-simulations, with k1/k2 pebbles on the left/right, respectively. This generalizes previous work on ordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2020

ISSN: 2470-0010,2470-0029

DOI: 10.1103/physrevd.102.054518