Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance
نویسندگان
چکیده
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملCarbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material
Carbon-coated SnO(2) nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs). The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical measurement. Wh...
متن کاملEnhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery
In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...
متن کاملGeneral and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance
We demonstrate a simple, efficient, yet versatile strategy for the synthesis of novel hierarchical heterostructures composed of TiO(2) nanofiber stem and various metal oxides (MOs) secondary nanostructures, including Co(3)O(4), Fe(2)O(3), Fe(3)O(4), and CuO, by advantageously combining the versatility of the electrospinning technique and hydrothermal growth method, for which the controllable fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Energy
سال: 2014
ISSN: 2211-2855
DOI: 10.1016/j.nanoen.2014.03.012