Amplitude equations for electrostatic waves: Multiple species

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amplitude Equations for Electrostatic Waves: multiple species

The amplitude equation for an unstable electrostatic wave is analyzed using an expansion in the mode amplitude A(t). In the limit of weak instability, i.e. γ → 0+ where γ is the linear growth rate, the nonlinear coefficients are singular and their singularities predict the dependence of A(t) on γ. Generically the scaling |A(t)| = γ5/2r(γt) as γ → 0+ is required to cancel the coefficient singula...

متن کامل

Amplitude Equations for Electrostatic Waves: universal singular behavior in the limit of weak instability

An amplitude equation for an unstable mode in a collisionless plasma is derived from the dynamics on the unstable manifold of the equilibrium F0(v). The mode eigenvalue arises from a simple zero of the dielectric ǫk(z); as the linear growth rate γ vanishes, the eigenvalue merges with the continuous spectrum on the imaginary axis and disappears. The evolution of the mode amplitude ρ(t) is studie...

متن کامل

Large‐amplitude electrostatic waves observed at a supercritical interplanetary shock

[1] We present the first observations at an interplanetary shock of large‐amplitude (> 100 mV/m pk‐pk) solitary waves and large‐amplitude (∼30 mV/m pk‐pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein‐like waves show enhanced power at integer and half‐integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, co...

متن کامل

Ionospheric Ion Acceleration by Multiple Electrostatic Waves

.. ........... ................................... 1

متن کامل

On the amplitude equations for weakly nonlinear surface waves

Nonlocal generalizations of Burgers’ equation were derived in earlier work by Hunter [Contemp. Math. 1989], and more recently by Benzoni-Gavage and Rosini [Comput. Math. Appl. 2009], as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage [Diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 1998

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.532635