An adaptive high-order unfitted finite element method for elliptic interface problems
نویسندگان
چکیده
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. derive hp-reliable and efficient residual type a posteriori error estimate K-meshes. A key ingredient is novel hp-domain inverse which allows us to prove stability of under practical interface resolving conditions also lower bound hp estimate. Numerical examples are included.
منابع مشابه
L2-Error Analysis of an Isoparametric Unfitted Finite Element Method for Elliptic Interface Problems
In the context of unfitted finite element discretizations the realization of high order methods is challenging due to the fact that the geometry approximation has to be sufficiently accurate. Recently a new unfitted finite element method was introduced which achieves a high order approximation of the geometry for domains which are implicitly described by smooth level set functions. This method ...
متن کاملThe aggregated unfitted finite element method for elliptic problems
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we pr...
متن کاملHigh-Order Multiscale Finite Element Method for Elliptic Problems
In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulat...
متن کاملAn Adaptive Finite Element Method for Linear Elliptic Problems
We propose an adaptive finite element method for linear elliptic problems based on an optimal maximum norm error estimate. The algorithm produces a sequence of successively refined meshes with a final mesh on which a given error tolerance is satisfied. In each step the refinement to be made is determined by locally estimating the size of certain derivatives of the exact solution through compute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2021
ISSN: ['0945-3245', '0029-599X']
DOI: https://doi.org/10.1007/s00211-021-01243-2