An Adaptive Local (AL) Basis for Elliptic Problems with Complicated Discontinuous Coefficients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...

متن کامل

A mortar element method for elliptic problems with discontinuous coefficients

This paper proposes a mortar finite element method for solving the two-dimensional second-order elliptic problem with jumps in coefficients across the interface between two subregions. Non-matching finite element grids are allowed on the interface, so independent triangulations can be used in different subregions. Explicitly realizable mortar conditions are introduced to couple the individual d...

متن کامل

Local discontinuous Galerkin methods for elliptic problems

In this paper, we review the development of local discontinuous Galerkin methods for elliptic problems. We explain the derivation of these methods and present the corresponding error estimates; we also mention how to couple them with standard conforming finite element methods. Numerical examples are displayed which confirm the theoretical results and show that the coupling works very well. Copy...

متن کامل

On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

The successful implementation of adaptive finite element methods based on a posteriori error estimates depends on several ingredients: an a posteriori error indicator, a refinement/coarsening strategy, and the choice of various parameters. The objective of the paper is to examine the influence of these factors on the performance of adaptive finite element methods for a model problem: the linear...

متن کامل

A New Immersed Interface FEM for Elliptic Problems with Discontinuous Coefficients and Nonlinear Local Own Source

)). ( ( )] [( ξ β ξ u g u x x = = (4) Problems of this type arise when we consider a diffusion equation with nonlinear localized chemical reactions. As a result of the reactions the derivatives are discontinuous across the interfaces (local sites of reactions). Some 2D problems with jump conditions, that depend on the solution on the interface are considered by J. Kandilarov and L. Vulkov [2,3,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2015

ISSN: 1617-7061

DOI: 10.1002/pamm.201510292