An Adequate Left-Associated Binary Numeral System in the lambda-Calculus (Revised Version)
نویسندگان
چکیده
منابع مشابه
An Adequate Left-Associated Binary Numeral System in the -Calculus
This paper introduces a sequence of λ-expressions modelling the binary expansion of integers. We derive expressions computing the test for zero, the successor function, and the predecessor function, thereby showing the sequence to be an adequate numeral system. These functions can be computed efficiently. Their complexity is independent of the order of evaluation.
متن کاملCounting Terms in the Binary Lambda Calculus
In a paper entitled Binary lambda calculus and combinatory logic, John Tromp presents a simple way of encoding lambda calculus terms as binary sequences. In what follows, we study the numbers of binary strings of a given size that represent lambda terms and derive results from their generating functions, especially that the number of terms of size n grows roughly like 1.963447954n.
متن کاملThe lambda - context calculus ( extended version ) 1
We present the Lambda Context Calculus. This simple lambda-calculus features variables arranged in a hierarchy of strengths such that substitution of a strong variable does not avoid capture with respect to abstraction by a weaker variable. This allows the calculus to express both capture-avoiding and capturing substitution (instantiation). The reduction rules extend the ‘vanilla’ lambda-calcul...
متن کاملAn example of a non adequate numeral system
Résumé Un système numérique est défini par la donnée de trois λ-termes clos: un λ-terme normal d0 pour Zéro, un λ-terme Sd pour le Successeur, et un λ-terme pour le Test à Zéro, tels que les λ-termes (Sd i d0) sont normalisables et possèdent des formes normales differentes. Un système numérique est dit adéquat ssi il possède un λ-terme clos pour le Prédécesseur. Dans cette Note nous présentons ...
متن کاملCounting and Generating Terms in the Binary Lambda Calculus (Extended version)
In a paper entitled Binary lambda calculus and combinatory logic, John Tromp presents a simple way of encoding lambda calculus terms as binary sequences. In what follows, we study the numbers of binary strings of a given size that represent lambda terms and derive results from their generating functions, especially that the number of terms of size n grows roughly like 1.963447954 . . .. In a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BRICS Report Series
سال: 1996
ISSN: 1601-5355,0909-0878
DOI: 10.7146/brics.v3i6.19969