An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems
نویسندگان
چکیده
منابع مشابه
An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
A new method is formulated and analyzed for the approximate solution of a twodimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit (ADI) method based on the Crank-Nicolson method combined with the L1-approximation of the time Caputo derivative of...
متن کاملAn ETD Crank-Nicolson Method for Reaction-Diffusion Systems
A novel Exponential Time Differencing (ETD) Crank-Nicolson method is developed which is stable, second order convergent, and highly efficient. We prove stability and convergence for semilinear parabolic problems with smooth data. In the nonsmooth data case we employ a positivity-preserving initial damping scheme to recover the full rate of convergence. Numerical experiments are presented for a ...
متن کاملL2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations
We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...
متن کاملExponential time differencing Crank-Nicolson method with a quartic spline approximation for nonlinear Schrödinger equations
This paper studies a central difference and quartic spline approximation based exponential time differencing Crank-Nicolson (ETD-CN) method for solving systems of one-dimensional nonlinear Schrödinger equations and twodimensional nonlinear Schrödinger equations. A local extrapolation is employed to achieve a fourth order accuracy in time. The numerical method is proven to be highly efficient an...
متن کاملA Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation
In this paper, a new alternating direction implicit Galerkin–Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank–Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2012
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2012.04.001