An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field
نویسندگان
چکیده
منابع مشابه
An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field.
An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model ...
متن کاملThe Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins.
Development of the AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Simulation) force field for proteins is presented. The current version (AMOEBA-2013) utilizes permanent electrostatic multipole moments through the quadrupole at each atom, and explicitly treats polarization effects in various chemical and physical environments. The atomic multipole electrostatic parameters for ea...
متن کاملCurrent status of the AMOEBA polarizable force field.
Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models toward more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA force field is a leading publicly avail...
متن کاملEvaluating Parametrization Protocols for Hydration Free Energy Calculations with the AMOEBA Polarizable Force Field.
Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent S...
متن کاملEvaluation of solvation free energies for small molecules with the AMOEBA polarizable force field
The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2013
ISSN: 1549-9618,1549-9626
DOI: 10.1021/ct400778h