An approximation for nonlinear differential-algebraic equations via singular perturbation theory

نویسندگان

چکیده

In this paper, we study jumps of nonlinear DAEs caused by inconsistent initial values. First, propose a simple normal form called the index-1 Weierstrass (INWF) for DAEs. Then generalize notion consistency projector linear to case. By an example, compare our proposed projectors with two existing consistent initialization methods show that are not coordinate-free, i.e., points calculated invariant under coordinates transformations. Next singular perturbed system approximation DAEs, which is ordinary differential equation (ODE) small perturbation parameter, solutions approximate both resulting from and $\mathcal C^1$-solutions DAE. At last, use numerical simulation DAE model arising electric circuit illustrate effectiveness

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential-algebraic equations and matrix-valued singular perturbation

With the arrival of modern component-based modeling tools for dynamic systems, the differential-algebraic equation form is increasing in popularity as it is general enough to handle the resulting models. However, if uncertainty is allowed in the equations — no matter how small — this thesis stresses that such equations generally become ill-posed. Rather than deeming the general differential-alg...

متن کامل

Geometric singular perturbation theory for stochastic differential equations

We consider slow–fast systems of differential equations, in which both the slow and fast variables are perturbed by additive noise. When the deterministic system admits a uniformly asymptotically stable slow manifold, we show that the sample paths of the stochastic system are concentrated in a neighbourhood of the slow manifold, which we construct explicitly. Depending on the dynamics of the re...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Singular perturbation problems for nonlinear elliptic equations in degenerate settings

Here N ≥ 1, g(s) ∈ C(R,R) is a function with a subcritical growth, V (x) ∈ C(R ,R) is a positive function and 0 < ε 1. Among solutions of (0.1)ε, we are interested in concentrating families (uε) of solutions, which have the following behavior: (i) uε(x) has a local maximum at xε ∈ R and xε converges to some x0 ∈ R as ε → 0. (ii) rescaled function vε(y) = uε(εy + xε) converges as ε → 0 to a solu...

متن کامل

Homotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations

Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2021

ISSN: ['2405-8963', '2405-8971']

DOI: https://doi.org/10.1016/j.ifacol.2021.08.496