An arbitrary high-order Spectral Difference method for the induction equation

نویسندگان

چکیده

We study in this paper three variants of the high-order Discontinuous Galerkin (DG) method with Runge-Kutta (RK) time integration for induction equation, analysing their ability to preserve divergence-free constraint magnetic field. To quantify divergence errors, we use a norm based on both surface term, measuring global and volume local errors. This leads us design new, arbitrary numerical scheme equation multiple space dimensions, modification Spectral Difference (SD) [1] ADER [2]. It appears as natural extension Constrained Transport (CT) method. show that it preserves ∇⋅B→=0 exactly by construction, sense. compare our new 3 RKDG energy evolution solution maps SD-ADER are qualitatively similar variant cleaning, but without need an additional extra variable control

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

Application of high-order spectral method for the time fractional mobile/immobile equation

In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...

متن کامل

the spectral iterative method for solving fractional-order logistic ‎equation

in this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. this approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. the method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

application of high-order spectral method for the time fractional mobile/immobile equation

in this paper, a numerical efficient method is proposed for the solution of time fractionalmobile/immobile equation. the fractional derivative of equation is described in the caputosense. the proposed method is based on a finite difference scheme in time and legendrespectral method in space. in this approach the time fractional derivative of mentioned equationis approximated by a scheme of order o...

متن کامل

A high-order spectral difference method for unstructured dynamic grids

A high-order spectral difference (SD) method has been further extended to solve the three dimensional compressible Navier–Stokes (N–S) equations on deformable dynamic meshes. In the SD method, the solution is approximated with piece-wise continuous polynomials. The elements are coupled with common Riemann fluxes at element interfaces. The extension to deformable elements necessitates a time-dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110327