An endpoint estimate for the cone multiplier

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Endpoint Smoothing Estimate for Schrödinger Equations

We prove that the multiplier operator U t defined by Û α t f = e it|·| f̂ is bounded from Lpβ(R ) to L(R × [0, 1]) for all β ≥ αd( 1 2 − 1 p )− α p when p ∈ ( 2(d+3) d+1 ,∞). This is sharp with respect to the Sobolev index when α 6= 1.

متن کامل

0 Endpoint Multiplier Theorems of Marcinkiewicz Type

We establish sharp (H 1 , L 1,q) and local (L log r L, L 1,q) mapping properties for rough one-dimensional multipliers. In particular, we show that the multipliers in the Marcinkiewicz multiplier theorem map H 1 to L 1,∞ and L log 1/2 L to L 1,∞ , and that these estimates are sharp.

متن کامل

An endpoint estimate for the Kunze - Stein phenomenon and related maximal operators

One of the purposes of this paper is to prove that if G is a noncompact connected semisimple Lie group of real rank one with finite center, then L(G) ∗ L(G) ⊆ L(G). Let K be a maximal compact subgroup of G and X = G/K a symmetric space of real rank one. We will also prove that the noncentered maximal operator M2f(z) = sup z∈B 1 |B| ∫ B |f(z)| dz is bounded from L2,1(X) to L2,∞(X) and from Lp(X)...

متن کامل

An entropy-like proximal algorithm and the exponential multiplier method for convex symmetric cone programming

We introduce an entropy-like proximal algorithm for the problem of minimizing a closed proper convex function subject to symmetric cone constraints. The algorithm is based on a distance-like function that is an extension of the Kullback-Leiber relative entropy to the setting of symmetric cones. Like the proximal algorithms for convex programming with nonnegative orthant cone constraints, we sho...

متن کامل

An entropy-like proximal algorithm and the exponential multiplier method for symmetric cone programming

We introduce an entropy-like proximal algorithm for the problem of minimizing a closed proper convex function subject to the symmetric cone constraint. The algorithm is based on a distance-like function that is an extension of the Kullback-Leiber relative entropy to the setting of symmetric cones. Like the proximal algorithm for convex programming with nonnegative orthant cone constraint, we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2010

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-09-10112-0