An Ergodic Theorem for General Semi-Groups
نویسندگان
چکیده
منابع مشابه
Upgrading the Local Ergodic Theorem for planar semi-dispersing billiards
The Local Ergodic Theorem (also known as the ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However, the proof of that theorem relies upon a delicate a...
متن کاملUpgrading Local Ergodic Theorem for planar semi-dispersing billiards
Local Ergodic Theorem (also known as ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However the proof of that theorem relies upon a delicate assumption...
متن کاملAn Ergodic Theorem for Stochastic Programming Problems?
To justify the use of sampling to solve stochastic programming problems one usually relies on a law of large numbers for random lsc (lower semicontinuous) functions when the samples come from independent, identical experiments. If the samples come from a stationary process, one can appeal to the ergodic theorem proved here. The proof relies on thèscalarization' of random lsc functions.
متن کاملAn ergodic theorem for quantum counting processes
Modern research on quantum-mechanical counting processes, be it numerical simulations [Car] or experimental investigations [MYK], usually starts from the tacit assumption that for the study of statistical properties of the counting records it does not make a difference whether a large number of experiments is performed or a single very long one. This assumption amounts to ergodicity of these re...
متن کاملKingman's Subadditive Ergodic Theorem Kingman's Subadditive Ergodic Theorem
A simple proof of Kingman’s subadditive ergodic theorem is developed from a point of view which is conceptually algorithmic and which does not rely on either a maximal inequality or a combinatorial Riesz lemma.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1939
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.25.12.625